### Crystal and Molecular Structures of the Tetrakis(diphenylketimine) Derivatives of Silicon, Germanium, and Tin

By Nathaniel W. Alcock \* and Melanie Pierce-Butler, Department of Molecular Sciences, University of Warwick, Coventry CV4 7AL, Warwickshire

The crystal and molecular structures of the title compounds  $[M(NCPh_2)_4; (1) M = Si, (2) M = Ge, (3) M = Sn]$ have been determined from diffractometer data. Crystal parameters are as follows: (1), triclinic, space group P1, a = 12.342(6), b = 18.100(8), c = 19.586(15) Å,  $\alpha = 86.89(5), \beta = 82.72(5), \gamma = 84.06(4)^{\circ}, Z = 4, 2524$ observed reflections,  $R \ 0.067$ ; (2), monoclinic, space group C2/c, a = 24.050(2), b = 11.971(1), c = 18.839(3)Å,  $\beta = 130.44(8)^\circ$ , Z = 4, 2 189 observed reflections,  $R \ 0.058$ ; (3), tetragonal, space group  $/4_1/a$ , a = 18.142(5), c = 14.461(3) Å, Z = 4, 1329 observed reflections, R 0.118. All the crystals contain discrete molecules, and the principal differences lie in the M–N=C angles [134.7, 139.5 for (1), 127.0 for (2), 121.3° for (3)]. The deviation of this angle from 120° and its change is attributed to the presence of  $p_{\pi} \rightarrow d_{\pi}$  bonding, decreasing from Si to Sn. The structures of (2) and (3) were determined by the heavy-atom method, and of (1) by direct methods.

FEW structures of compounds containing the ketimine group (R<sub>2</sub>-C=N-M) have been determined, despite its interest as a probe for the nature of the N-M interaction. In three known structures, M is a Group II or III element, Be,<sup>1</sup> B,<sup>2</sup> or Al.<sup>3</sup> In the present work, Group IV elements have been studied systematically, in the determination of the crystal structures of the tetrakis(diphenylketimine) derivatives  $M(NCPh_2)_4$  [M = Si (1), Ge (2), and Sn (3)]. The results have revealed significant information about  $d_{\pi}-p_{\pi}$  bonding in these compounds; a preliminary report has been published.<sup>4</sup>

The products were obtained as yellow moisture-sensitive crystals, and were recrystallised from hexane. (1) and (2) formed ill defined chunky crystals, whereas crystals of (3) were bipyramidal.

The samples were mounted in Lindemann glass capillaries in a dry box; particular precautions against traces of moisture were required when handling (3), and the capillaries were baked at 360 K for several hours under vacuum.

Crystal Data.-These are listed in Table 1. Data were collected with a Syntex  $P2_1$  four-circle diffractometer in the  $\theta$ -2 $\theta$  mode with graphite monochromator; accurate cell constants were obtained by a least-squares fit to the

|     |                  |      |                          |           | Tabi         | LE I           |              |                         |                    |                |
|-----|------------------|------|--------------------------|-----------|--------------|----------------|--------------|-------------------------|--------------------|----------------|
|     |                  |      |                          |           | Crysta       | l data         |              |                         |                    |                |
|     | Compo            | and  | System                   | a/Å       | $b/{ m \AA}$ | $c/\text{\AA}$ | α/°          | ß/°                     | v/°                | $U/{ m \AA^3}$ |
| (1) | C52H40N          | I₄Si | Triclinic                | 12.342(6) | 18.100(8)    | 19.586(15)     | 86.89(5)     | 82.72(5)                | 84.06(4)           | 4 313          |
| (2) | C52H40N          | Ge   | Monoclinic               | 24.050(2) | 11.971(1)    | 18.839(3)      | 90 `´        | 130.44(8)               | 90                 | 4 128          |
| (3) | $C_{52}H_{40}N$  | [₄Sn | Tetragonal               | 18.142(5) | 18.142       | 14.461(3)      | 90           | 90                      | 90                 | 4 758          |
|     |                  |      |                          | Molecular |              |                |              |                         |                    |                |
|     | $D_{\mathbf{c}}$ | Ζ    | Space group              | symmetry  | F(000)       | λ/Å            | Total refls. | Obs. $(3\sigma)$ refls. | µ/cm <sup>-1</sup> |                |
| (1) | 1.16             | 4    | $P\overline{\mathbf{i}}$ | 1         | 1 632        | 0.71069        | $5\ 205$     | 2524                    | 0.89               |                |
| (2) | 1.28             | 4    | C2/c                     | <b>2</b>  | 1 648        | 0.71069        | $2\ 130$     | $2\ 189$                | 7.7                |                |
|     |                  |      |                          |           |              | 1.5418         | 1 830        |                         | 12.9               |                |
| (3) | 1.17             | 4    | $I4_1/a$                 | 4         | 1 720        | 1.5418         | 1994         | 1 329                   | 53.6               |                |
|     |                  |      |                          |           |              |                |              |                         |                    |                |

EXPERIMENTAL

All three compounds were prepared by the method of ref. 5 from the lithium salt of diphenylketimine and the appropriate Group IV halide: 6

 $4Ph_2C=NLi + MX_4 \longrightarrow 4LiX + (Ph_2CN)_4M$ 

<sup>1</sup> J. B. Farmer, Ph.D. Thesis, Durham University, 1973.

<sup>2</sup> G. J. Bullen and K. Wade, Chem. Comm., 1971, 1122.

<sup>3</sup> H. M. M. Shearer, R. Snaith, J. D. Sowerby, and K. Wade, Chem. Comm., 1971, 1275, 183.

reflecting positions of 15 high-angle reflections. No density measurements were made because of the experimental difficulties, but only the values of Z shown give plausible  $D_{\rm c}$ . For (1), because of the large number of possible reflections, the maximum  $2\theta$  value was limited to  $40^{\circ}$  for

<sup>4</sup> N. W. Alcock, M. Pierce-Butler, G. R. Willey, and K. Wade, J.C.S. Chem. Comm., 1975, 183. <sup>5</sup> L.-H. Chan and E. G. Rochow, J. Organometallic Chem.,

1967, 9, 231.

<sup>6</sup> C. Summerford and K. Wade, J. Chem. Soc. (A), 1969, 1487.

# TABLE 2 anisotropic \* temperat

|                  |                        |                                |                       | Таві                    | LE 2               |                                 |                  |                  |                       |
|------------------|------------------------|--------------------------------|-----------------------|-------------------------|--------------------|---------------------------------|------------------|------------------|-----------------------|
| (a) Indep        | pendent atomi          | ic co-ordinates                | $(	imes 10^4)$ and an | nisotropic * te         | mperature facto    | rs ( $	imes 10^3$ ), v          | vith standard    | deviations in    | n parentheses         |
| Atom             | X                      | Y                              | Z                     | <i>U</i>                | U.                 | <i>U.</i> .                     | U.               | $U_{22}$         | <i>U</i> .,           |
| Si(1)            | 680(4)                 | 9243(3)                        | 7515(3)               | 43(4)                   | 45(4)              | 55(4)                           | 1(3)             | -14(3)           | -2(3)                 |
| Si(2)            | 4613(5)                | $6\ 051(3)$                    | 2 571(3)              | 67(5)́                  | 53(4)              | <b>48(4)</b>                    | -15(3)           | -9(4)            | -7(3)                 |
| N(11)            | -68(10)                | 9 390(8)                       | 6 837(7)              | 44(11)                  | 44(11)             | 58(11)                          | 6(8)             | -24(9)           | 12(8)                 |
| N(12)<br>N(12)   | 499(11)                | 8 376(8)                       | 7 871(6)              | 39(11)                  | 56(12)             | 36(9)<br>50(10)                 | -14(9)           | 1(8)             | 10(8)                 |
| N(13)<br>N(14)   | 341(10)                | 9308(7)<br>9848(7)             | 8 180(7)              | $\frac{29(11)}{39(11)}$ | 50(10)             | 34(9)                           | -4(9)<br>-7(8)   | -9(8)            | -10(3)                |
| N(21)            | 4628(12)               | 6 816(8)                       | 2019(8)               | 82(14)                  | 60(12)             | 53(11)                          | -14(9)           | -20(10)          | 1(10)                 |
| N(22)            | 4 455(10)              | 5 291(8)                       | 2 142(7)              | 37(11)                  | 47(11)             | 80(11)                          | -21(9)           | -19(8)           | -20(9)                |
| N(23)<br>N(24)   | 5 809(14)              | 5 808(8)                       | 2 916(7)              | 51(14)                  | 62(12)             | 55(10)                          | -4(12)           | -11(11)          | -6(8)                 |
| C(11)            | 5543(11)<br>581(15)    | 51(10)                         | 3 436(8)              | 62(15)                  | 50(9)<br>55(14)    | $\frac{47(9)}{31(12)}$          | -29(12)          | -3(10)<br>11(10) | $-\frac{9(7)}{3(10)}$ |
| C(12)            | 292(15)                | 2 021(10)                      | 2 023(8)              | 38(13)                  | 56(16)             | 48(13)                          | -1(12)           | -2(11)           | -1(11)                |
| C(13)            | 2813(14)               | 8 969(10)                      | 6 854(8)              | 30(13)                  | 67(16)             | 48(13)                          | -1(8)            | -21(11)          | 11(10)                |
| C(14)<br>C(21)   | 951(13)<br>4 192(16)   | $10\ 028(8)$<br>7\ 070(10)     | 8 616(8)              | 49(14)                  | 45(11)<br>62(15)   | $\frac{31(11)}{24(14)}$         | -1(10)<br>31(19) | 7(10)<br>4(12)   | 2(9)<br>91(19)        |
| C(21)<br>C(22)   | 4006(14)               | 4690(9)                        | 2235(8)               | 55(14)                  | 54(13)             | 37(12)                          | -31(12)<br>6(11) | -5(10)           | -34(11)               |
| $\tilde{C}(23)$  | 3165(18)               | 4 190(9)                       | 7 259(8)              | 64(18)                  | 35(11)             | 68(13)                          | 0(13)            | -19(13)          | 4(9)                  |
| C(24)            | $3\ 363(14)$           | $6\ 651(9)$                    | 3 757(9)              | 69(15)                  | 33(12)             | 71(13)                          | -1(11)           | -18(12)          | 7(10)                 |
| (b) Co-oi        | rdinates ( $\times 10$ | ) <sup>5</sup> ) of rigid-grou | ip atoms and          | isotropic tem           | perature factors   | s ( $	imes 10^3$ )              |                  |                  |                       |
| Atom             | X                      | Y                              | Ζ                     | U                       | Atom               | X                               | Y                | Ζ                | U                     |
| C(111)           | 10 850                 | 1 468                          | 40 858                | 51(4)                   | C(211)             | 45 291                          | 77 488           | 11 252           | 66(5)                 |
| C(112)           | 12 506                 | 8 631                          | 42 582<br>48 754      | 52(4)<br>76(5)          | C(212)             | 38 047<br>49 040                | 82 848<br>88 890 | 8 388<br>1 1 97  | 93(6)<br>110(A)       |
| C(113)<br>C(114) | 19 023                 | 3 685                          | 53 202                | 70(5)<br>71(5)          | C(213)<br>C(214)   | 53 295                          | 89 551           | 3 450            | 102(6)                |
| Č(115)           | 17 366                 | -3478                          | 51 478                | 80(5)                   | C(215)             | 60 538                          | 84 191           | 6 315            | 109(7)                |
| C(116)           | 13 280                 | -4 587                         | 45 306                | 72(5)                   | C(216)             | 56 536                          | 78 160           | 10 216           | 79(5)                 |
| H(112)           | 10 851                 | 12 755                         | 39 553                | 111(49)                 | H(212)<br>H(913)   | 30 389                          | 82 391           | 9 094            | 65(4)<br>997(59)      |
| H(113)<br>H(114) | 21 806                 | 4 440                          | 49 928<br>57 405      | 218(61)                 | H(213)<br>H(214)   | 56 020                          | $93\ 659$        | 2 330 794        | 380(84)               |
| H(115)           | 19 021                 | -7602                          | 54 507                | 277(75)                 | H(215)             | 68 197                          | 84 648           | 5609             | 112(45)               |
| H(116)           | 12 151                 | -9465                          | 44 132                | 114(57)                 | H(216)             | 61 469                          | 74 509           | $12\ 166$        | 61(48)                |
| C(311)<br>C(312) | 6 894<br>17 216        | 92 804                         | 31 735 30 065         | 62(4)<br>105(6)         | C(411)<br>C(412)   | $\frac{32}{24} \frac{540}{685}$ | 63 850           | 12 263           | 73(5)                 |
| C(312)<br>C(313) | 18 107                 | 81 746                         | 27 719                | 102(6)                  | C(413)             | 16 504                          | 60 412           | 14 238           | 90(6)                 |
| C(314)           | 8 678                  | 78 343                         | 27 044                | 98(6)                   | C(414)             | $16\ 182$                       | <b>60 323</b>    | 7 128            | 89(6)                 |
| C(315)           | -1644                  | 82 170                         | 28 714                | 123(6)                  | C(415)<br>C(416)   | 24 043                          | 63 672<br>67 110 | $2586 \\ 5153$   | 87(5)<br>76(5)        |
| H(312)           | -2535<br>23638         | 89 401<br>91 294               | 30 524                | -89(31)                 | H(412)             | 32 224<br>24 904                | 63 910           | 21646            | 94(48)                |
| H(313)           | $25\ 137$              | 79 139                         | 26 581                | 197(64)                 | H(413)             | 11 151                          | 58 131           | 17 331           | 132(45)               |
| H(314)           | 9 285                  | 73 419                         | 25 446                | 518(93)                 | H(414)             | 10 611                          | 57 982           | 5 380            | 218(73)               |
| H(315)<br>H(316) | - 8 066                | 79 853                         | 28 255<br>32 198      | 104(50)<br>97(49)       | H(415)<br>H(416)   | $23824 \\ 37577$                | 63 612<br>69 391 | -2255            | 212(09)<br>90(39)     |
| C(121)           | -5000<br>1 282         | 27 988                         | 17 275                | 49(4)                   | C(221)             | 34 720                          | 44 386           | 29 368           | 55(5)                 |
| C(122)           | 10 135                 | 31 803                         | 14 411                | 74(5)                   | C(222)             | 39 887                          | 45 279           | 35 184           | 66(5)                 |
| C(123)           | 8 311                  | 39 019                         | 11 630                | 88(6)<br>86(5)          | C(223)             | 35 143                          | 42975            | 41 701           | 90(6)<br>84(6)        |
| C(124)<br>C(125) | -2306<br>-11919        | 42 420                         | 11 714                | 80(9)<br>87(6)          | C(224)<br>C(225)   | 20 064                          | 38 886           | 36 586           | 84(5)                 |
| C(126)           | -9 395                 | 31 389                         | 17 358                | 62(5)                   | C(226)             | 24 808                          | 41 190           | 30 069           | 75(6)                 |
| H(122)           | 17 407                 | 29 487                         | 14 354                | 90(5)                   | H(222)             | 46 636                          | 47 455           | 34 707           | 65(34)                |
| H(123)           | 14 340                 | 41 616                         | 9 680                 | 194(5)                  | H(223)             | 38 662                          | 43 583           | 45 662           | 200(73)<br>216(61)    |
| H(124)<br>H(125) | -18491                 | 40 921                         | 14 635                | 123(44)                 | H(225)             | 13 314                          | 36 710           | 37 063           | 132(47)               |
| H(126)           | -15424                 | 28 792                         | 19 309                | 97(36)                  | H(226)             | 21 289                          | 40 582           | 26 108           | 90(33)                |
| C(321)           | 14 254                 | 17 554                         | 22 195                | 55(4)                   | C(421)             | 40 261                          | 41 790           | 16 553           | 53(5)<br>60(5)        |
| C(322)           | 19112<br>99197         | 21 594                         | 20 079                | 80(5)<br>84(5)          | C(422)<br>C(423)   | 41 184                          | 40 478           | 4 212            | 104(6)                |
| C(323)<br>C(324) | 34 284                 | 12 008                         | 26 550                | 86(6)                   | C(424)             | 41 242                          | 32 813           | 5 229            | 90(6)                 |
| C(325)           | 29 427                 | 7 967                          | 22 067                | 97(6)                   | C(425)             | 40 319                          | 29 637           | 11 909           | <b>95(6)</b>          |
| C(326)           | 19 412                 | 10 740                         | 19 889                | 70(5)                   | C(426)             | 39 828                          | 34 125           | 17 570           | 74(6)<br>37(33)       |
| H(322)<br>H(323) | 10 099                 | 20 230                         | 28 249                | 257(70)                 | H(423)             | 42 304                          | 42 641           |                  | 200(67)               |
| H(324)           | 41 105                 | 10 120                         | 28 033                | 312(80)                 | H(424)             | 41 576                          | 29 757           | 1 374            | 411(107)              |
| H(325)           | 32 940                 | 3 327                          | 20 496                | 175(59)                 | H(425)             | 40 024                          | 24 417           | 12 602           | 164(57)<br>70(56)     |
| H(326)<br>C(131) | 16 104 28 839          | 7 988<br>81 493                | 10 835<br>68 200      | 88(43)<br>67(5)         | F1 (426)<br>C(231) | 59 199<br>26 691                | 31 902<br>38 460 | 22 119<br>79 337 | 68(5)                 |
| C(132)           | 37 208                 | 76 841                         | 70 873                | 66(6)                   | Č(232)             | 28 045                          | 41 610           | 85 514           | 84(5)                 |
| C(133)           | 37 516                 | 69 124                         | 70 574                | <b>84(6</b> )           | C(233)             | 22 813                          | 38 925           | 91 756           | 95(5)                 |
| C(134)           | 29 447                 | 65 988<br>70 570               | 67 602<br>64 999      | 89(6)<br>78(7)          | C(234)<br>C(235)   | 16 228                          | 33 090<br>29 940 | 91 821<br>85 644 | 102(6)                |
| C(135)<br>C(136) | 20 762                 | 78 287                         | 65 227                | 62(6)                   | C(236)             | 20 105                          | 32 625           | 79 403           | 103(6)                |
| H(132)           | 42 704                 | 78 976                         | 72 897                | 105(31)                 | H(232)             | 32 529                          | 45 584           | 85 470           | 65(41)                |
| H(133)           | 43 221                 | 66 004<br>60 700               | 72 395                | 185(54)                 | H(233)             | 23 735<br>19 665                | 41 071           | 95 963<br>06 079 | 236(72)               |
| H(134)<br>H(135) | 29 657<br>15 575       | 60 733<br>68 435               | 07 399<br>62 904      | 230(09)<br>189(54)      | H(234)             | 10 389                          | 25 966           | 85 689           | 247(68)               |
| H(136)           | 15 057                 | 81 407                         | 63 406                | 66(52)                  | H(236)             | 19 183                          | 30 480           | 75 196           | 77(35)                |

|        |             |                   |                      | TABLE 2                 | (Continued)                  |                        |                 |                         |              |
|--------|-------------|-------------------|----------------------|-------------------------|------------------------------|------------------------|-----------------|-------------------------|--------------|
| Atom   | X           | Y                 | Ζ                    | U                       | Atom                         | X                      | Y               | Ζ                       | U            |
| C(331) | 37 837      | 93 449            | $65 \ 471$           | 58(5)                   | C(431)                       | $23 \ 734$             | $45 \ 342$      | 68  002                 | 72(6)        |
| C(332) | 45 018      | 90 094            | 60 171               | 78(5)                   | C(432)                       | 12 957                 | 47 654          | $70 \ 642$              | 84(6)        |
| C(333) | 53 962      | 93 689            | 57 085               | 95(6)                   | C(433)                       | 5967                   | $51\ 663$       | $66 \ 408$              | 114(6)       |
| C(334) | 55 724      | 100 640           | 59299                | 90(6)                   | C(434)                       | 9.754                  | $53 \ 360$      | 59533                   | 86(7)        |
| C(335) | 48 542      | 103 995           | 64 600               | 81(5)                   | C(435)                       | 20 532                 | 51 048          | 56 893                  | 81(7)        |
| C(336) | 39 599      | 100 400           | 67 686               | 69(5)                   | C(436)                       | 27 521                 | 47 039          | $61\ 127$               | 72(6)        |
| H(332) | 43 818      | 85 361            | $58\ 662$            | 26(35)                  | H(432)                       | $10\ 377$              | $46 \ 499$      | $75 \ 324$              | 124(43)      |
| H(333) | 58852       | 91 404            | 53 475               | 190(64)                 | H(433)                       | -1372                  | $53\ 237$       | 68 206                  | 224(83)      |
| H(334) | 61 814      | 103 089           | $57\ 198$            | 36(83)                  | H(434)                       | 4995                   | 56090           | 56 650                  | 300(81)      |
| H(335) | 49742       | 108 729           | 66 108               | 138(52)                 | H(435)                       | $23\ 111$              | $52 \ 204$      | $52 \ 211$              | 151(56)      |
| H(336) | 34 708      | $102 \ 685$       | 71 296               | 250(29)                 | H(436)                       | 34 861                 | $45 \ 465$      | $59\ 329$               | 121(80)      |
| C(141) | 20 834      | 96 575            | 86 857               | 45(4)                   | C(241)                       | $22\ 190$              | $67\ 438$       | $41 \ 050$              | <b>59(4)</b> |
| C(142) | 22724       | 88 882            | 87 896               | <b>74</b> (5)           | C(242)                       | $18 \ 904$             | 73 544          | $45\ 178$               | 74(5)        |
| C(143) | $33 \ 424$  | $85\ 532$         | 87 856               | 85(5)                   | C(243)                       | $7 \ 971$              | 74 886          | $48\ 014$               | 84(6)        |
| C(144) | 42 234      | 89 876            | 86 776               | 88(6)                   | C(244)                       | 323                    | $70\ 122$       | 46 722                  | 97(6)        |
| C(145) | $40 \ 345$  | 97 569            | $85 \ 736$           | 84(5)                   | C(245)                       | 3609                   | $64 \ 016$      | 42 594                  | 101(6)       |
| C(146) | 29645       | 100 919           | $85\ 776$            | 75(5)                   | C(246)                       | 14 542                 | 62  673         | 39758                   | 76(5)        |
| H(142) | $16\ 724$   | $85\ 924$         | $88 \ 632$           | 34(33)                  | H(242)                       | $24\ 112$              | $76\ 789$       | $46\ 059$               | 77(56)       |
| H(143) | 34 710      | $80 \ 292$        | 88 564               | 88(49)                  | H(243)                       | $5\ 734$               | 79045           | 50 826                  | 124(60)      |
| H(144) | 49 521      | 87 594            | 86748                | 349(78)                 | H(244)                       | -7.123                 | $71 \ 037$      | $48 \ 653$              | 165(70)      |
| H(145) | $46 \ 345$  | 100 528           | $85\ 000$            | 203(60)                 | H(245)                       | -1600                  | $60\ 771$       | 41 713                  | 238(59)      |
| H(146) | $28 \ 358$  | $106\ 159$        | $85\ 068$            | 79(39)                  | H(246)                       | $16\ 779$              | $58\ 515$       | 36 946                  | 124(61)      |
| C(341) | $5\ 475$    | 6 346             | $91\ 089$            | <b>48(4)</b>            | C( <b>441</b> )              | 42 589                 | $69\ 682$       | $40 \ 581$              | 61(5)        |
| C(342) | -2.889      | $11\ 556$         | $89\ 232$            | 57 (5)                  | C(442)                       | 42 904                 | 68744           | 47 688                  | 85(6)        |
| C(343) | -6656       | 17  534           | $93\ 436$            | 78(5)                   | C(443)                       | $51\ 206$              | 71 536          | $50\ 722$               | 113(7)       |
| C(344) | -2.057      | $18 \ 303$        | $99\ 499$            | 85(5)                   | C(444)                       | $59\ 192$              | $75\ 267$       | 46 648                  | 107(7)       |
| C(345) | $6\ 308$    | 13 093            | $101 \ 356$          | 86(6)                   | C(445)                       | $58\ 876$              | $76\ 206$       | 39541                   | 112(7)       |
| C(346) | $10\ 074$   | $7\ 115$          | $97\ 151$            | 78(5)                   | C(446)                       | 50 575                 | $73 \ 413$      | 36 508                  | 81(5)        |
| H(342) | -6.021      | -11 033           | $85\ 103$            | 121(50)                 | H(442)                       | $37 \ 466$             | $66\ 203$       | $50 \ 463$              | 8(27)        |
| H(343) | -12  352    | $-21\ 082$        | $92\ 172$            | 159(49)                 | H(443)                       | $51 \ 421$             | 70897           | $55 \ 562$              | 298(82)      |
| H(344) | -4622       | $-22 \ 374$       | $102 \ 362$          | 189(60)                 | H(444)                       | 64 845                 | $77\ 169$       | $48 \ 714$              | 451(125)     |
| H(345) | $9\ 439$    | $13\ 617$         | $105 \ 484$          | 303(82)                 | H(445)                       | $64 \ 315$             | 78 747          | 36  767                 | 144(74)      |
| H(346) | $15\ 771$   | 3567              | 98 416               | 100(42)                 | H(446)                       | $50 \ 360$             | $74 \ 053$      | 31 668                  | 50(43)       |
|        | * In the fo | rm: $\exp\{-2\pi$ | $(U_{11}h^2a^{*2} +$ | $U_{22}k^{2}b^{*2} + U$ | $_{33}l^2c^{*2} + 2U_{12}hk$ | $a^{*}b^{*} + 2U_{13}$ | $hla*c* + 2U_2$ | $_{23}klb^{*}c^{*})\}.$ |              |

the first 500 reflections, and then reduced to  $35^{\circ}$ . For (2), the first 2 130 reflections were collected with Mo- $K_{\alpha}$  ( $\lambda = 0.71069$  Å) radiation to  $2\theta$  50°; after a computer malfunction, collection was completed with Cu- $K_{\alpha}$  ( $\lambda = 1.5418$  Å) radiation to  $2\theta_{max}$ . 130°. For both these compounds variable scan rates were used, between 1° min<sup>-1</sup> and 29° min<sup>-1</sup> in 2 $\theta$  depending on the intensity of a prescan. Three standard reflections were examined at intervals of 100 reflections; no decomposition was observed during collection for either (1) or (2).

Compound (3) is extremely moisture sensitive, so much so that despite all precautions the mounted crystals had a very limited lifetime. For this reason the diffractometer was used for preliminary investigations instead of standard photographic procedures.

The initial results from the centring procedure pointed to a tetragonal space group; the difference in intensities of possibly equivalent reflections [F(hkl) = F(hkl)] indicated Laue group 4/m. Random sampling of the data indicated that the lattice was body-centred as no reflections satisfying the condition h + k + l = 2n + 1 were observed. For data collection, a variable scan rate was employed with a minimum speed of 5° min<sup>-1</sup> in 20. Copper radiation was used to  $2\theta_{max}$  120°. A total of 1 994 unique reflections was measured in 23 h: three standards were remeasured after every hundred reflections. Their fall off in intensity with time showed a slight break after 7 h, and for rescaling this was fitted to the equation:  $F = F_o(1.0 + \alpha T)(1.0 + \beta T \sin \theta/\lambda)$  where T is exposure time in hours, and for T < 7,  $\alpha = 0.023$ ,  $\beta = 0.010$ , for T > 7,  $\alpha = 0.014$ ,  $\beta = 0.031$ . The maximum rescale factor for any of the

<sup>7</sup> N. W. Alcock, 'The Analytical Method for Absorption Correction,' in 'Crystallographic Computing,' ed. F. Ahmed, Munksgaard, Copenhagen, 1970. standards was 1.72 (calculated on F). Only for (3) was an absorption correction applied. Transmission factors, calculated by the analytical method with ABSCOR <sup>7</sup> ranged from 0.127 to 0.354. All data were corrected for Lorentz and polarisation factors (monochromator assumed ideally mosaic).

For (3) the systematic extinctions  $[hkl, h + k + l \neq 2n;$  $hk0, h(k) \neq 2n; 00l, (l \neq 4n)]$  indicate space group  $I4_1/a$ uniquely. For (2)  $(hkl, h + k \neq 2n; h0l, l \neq 2n)$ , and (1) (no extinctions), the alternatives C2/c or Cc and PIor PI exist; in each case the first was assumed and shown to be correct by satisfactory refinement. In (2) and (3) the molecule has crystallographic symmetry (Table 1), and for (3) the origin was chosen at the I rather than the 4 position.

Structure Solutions.—For (2) and (3) the structures were readily solved by the heavy-atom method, and no difficulty was found in destroying the pseudosymmetry of the initial heavy-atom phased Fourier syntheses. Refinement proceeded normally, with anisotropic temperature factors in the final cycles for all except hydrogen atoms which were included and refined, using statistical weights for (2) and unit weights for (3). Final R values were 0.058 and 0.118 respectively. The latter value is high, but not unexpected in view of the rapid crystal decomposition.

For (1) an initial solution was very much more difficult to obtain. The Patterson synthesis was insufficiently dominated by Si $\cdots$ Si vectors to be interpretable. The first attempt by direct methods used MULTAN;<sup>8</sup> examination of 7 solutions obtained from all sign combinations (except +++) for the three most strongly connected reflections did not show two strong peaks for Si atoms, and were therefore rapidly rejected. Application of the PHASE

<sup>8</sup> G. Germain, P. Main, and M. M. Wilson, Acta Cryst., 1971, **A27**, 369.

| Atomi             | c co-ordinate        | s ( $	imes 10^4$ ), isotro | pic and anisotrop<br>paren    | pic <b>*</b> temp<br>theses, fo | perature fa          | actors ( $\times$     | 10), with st            | andard devia   | itions in   |
|-------------------|----------------------|----------------------------|-------------------------------|---------------------------------|----------------------|-----------------------|-------------------------|----------------|-------------|
| Atom              | X                    | Y                          | Z                             | B.,                             | Baa                  | Bee                   | Baa                     | <i>B</i>       | <i>B</i>    |
| Ge                | 0                    | 1.310(1)                   | 2 500                         | 211(5)                          | 12.0(5)              | 38<br>91 1/4          | ) 0                     | 14.9(4)        | 0           |
| N(1)              | 573(3)               | 2216(4)                    | $\frac{2}{2}$ $\frac{377}{3}$ | 20(3)                           | 12(2)                | 32(2)                 | -2(2)                   | 20(2)          | -10(9)      |
| N(2)              | 583(3)               | 433(4)                     | 3 568(3)                      | 23(3)                           | 10(2)                | 96(9)                 | $-\frac{2}{5}(2)$       | 20(2)          | -10(2)      |
| COD               | 333(4)               | 3.076(5)                   | 1854(4)                       | 28(3)                           | 19(2)                | 20(2)                 | -2(2)                   | 20(2)<br>91(9) | 3(2)        |
| $\tilde{C}(2)$    | 904(4)               | 9 530(5)                   | 3 707(4)                      | 20(3)                           | $\frac{12(3)}{7(3)}$ | $\frac{22(2)}{99(9)}$ | -2(2)<br>1(2)           | $\frac{21}{2}$ | -3(2)       |
| $\tilde{C}(21)$   | 984(4)               | 8 976(6)                   | 3 050(4)                      | 20(3)<br>91(3)                  | 92(4)                | 22(2)                 | 1 ( <i>2</i> )<br>9 (9) | 11(2)<br>15(2) | 1(2)        |
| C(22)             | 861(4)               | 7 899(6)                   | 9 880(4)                      | 21(3)<br>20(4)                  | 19(9)                | 20(2)                 | 0( <i>4</i> )           | 10(3)          | 10(3)       |
| C(22)             | 804(5)               | 7 399(7)                   | 2 000(4)                      | 29(4)<br>10(5)                  | 18(3)                | 34(3)<br>50(4)        | -3(2)                   | 21(3)<br>20(4) | Z(3) = 1(4) |
| C(24)             | 1 079(5)             | 7 054(7)                   | 2 240(0)                      | 20(5)                           | 46(4)                | <b>30(4)</b>          | -12(3)                  | 30(4)<br>99(4) | 1(4)        |
| C(24)             | 1 991(5)             | 0.001(7)                   | 1 000(5)                      | 39(0)                           | 40(0)                | 40(3)                 | -3(3)                   | 28(4)          | 14(4)       |
| C(26)             | 1 221(0)<br>1 166(A) | 9001(7)                    | 1 990(0)                      | 40(0)                           | 40(0)                | 49(3)                 | 14(3)                   | 37(4)          | 21(4)       |
| C(20)             | 1 919(4)             | 9 004(7)                   | 2 007(3)                      | 32(4)                           | 30(4)                | 42(3)                 | 9(3)                    | 27(3)          | 10(3)       |
| C(27)             | 1 212(4)             | 8 910(D)<br>0 000(C)       | 4 581(4)                      | 29(4)                           | 11(3)                | 30(3)                 | -1(2)                   | 18(3)          | 0(3)        |
| C(20)             | 004(4)               | 8 980(0)                   | 4 949(5)                      | 41(4)                           | ZZ(4)                | 39(3)                 | D(3)                    | 28(3)          | 1(3)        |
| C(29)             | 1 120(0)<br>1 741(5) | 8 401(0)                   | 5 747(5)                      | 01(5)                           | 24(4)                | 48(5)                 | -1(3)                   | 41(4)          | -9(3)       |
| C(210)            | 1 741(0)             |                            | 6 199(5)                      | 40(0)                           | 28(4)                | 31(3)                 | 8(3)                    | 20(3)          | -3(4)       |
| C(211)            | 2 119(5)             | 7711(7)                    | 5 869(5)                      | 35(5)                           | 28(4)                | 37(3)                 | 8(3)                    | 17(3)          | 7(4)        |
| C(212)            | 1 839(4)             | 8 268(6)                   | 5 053(5)                      | 32(4)                           | 23(3)                | 32(3)                 | 3(2)                    | 19(3)          | 5(3)        |
| C(111)            | 877(4)               | 3 783(6)                   | 1942(4)                       | 33(4)                           | 15(3)                | 28(2)                 | 0(2)                    | 22(3)          | 4(3)        |
| C(112)            | 718(4)               | 4 349(6)                   | 1 177(4)                      | 34(4)                           | 20(4)                | 30(3)                 | 1(2)                    | 22(3)          | -4(3)       |
| C(113)            | 1232(5)              | 4 989(6)                   | 1 267(5)                      | 49(5)                           | 22(3)                | 43(3)                 | 3(3)                    | 37(4)          | -2(3)       |
| C(114)            | 1 923(5)             | 5 110(6)                   | 2125(6)                       | 45(5)                           | 23(4)                | 60(4)                 | -4(3)                   | 44(4)          | -7(3)       |
| C(115)            | 2 091(5)             | 4 558(7)                   | 2 894(5)                      | 37(4)                           | 35(4)                | 38(3)                 | -7(3)                   | 25(3)          | -6(3)       |
| C(116)            | 1 584(4)             | 3 891(6)                   | 2 803(5)                      | 39(4)                           | 30(4)                | 36(3)                 | 0(3)                    | 30(3)          | -3(3)       |
| C(117)            | -440(4)              | 3 468(6)                   | 1 176(4)                      | 33(4)                           | 23(4)                | 24(2)                 | <b>4</b> (2)            | 21(3)          | -8(3)       |
| C(118)            | -630(4)              | 4 561(7)                   | 1 203(5)                      | 31(4)                           | 33(4)                | 30(3)                 | 5(3)                    | 21(3)          | 9(3)        |
| C(119)            | -1337(5)             | 4 941(8)                   | 623(6)                        | 46(5)                           | 46(5)                | 46(4)                 | 11(3)                   | 34(4)          | 13(4)       |
| C(120)            | -1889(5)             | 4 233(9)                   | -22(6)                        | 42(5)                           | 70(6)                | 49(4)                 | 24(4)                   | 31(4)          | 16(5)       |
| C(121)            | -1.730(5)            | 3168(9)                    | -113(6)                       | 37(5)                           | 60(6)                | 40(3)                 | 7(3)                    | 18(4)          |             |
| C(122)            | -1011(5)             | 2 772(7)                   | 491(5)                        | 40(5)                           | 27(4)                | 37(3)                 | 9(3)                    | 20(3)          | 4(4)        |
| Atom              | X                    | Y                          | Z B                           | А                               | tom                  | X                     | Y                       | Ζ              | B           |
| H(22)             | 712(30)              | 7 386(48) 3                | 165(32) - 13(9)               | Н                               | (112)                | 264(40)               | 4244(65)                | 610(44)        | 11(15)      |
| $\mathbf{H}(23)$  | 816(46)              | 6574(76) 2                 | 141(53) $29(20)$              | H                               | (113) 1              | 1118(42)              | 5 316(69)               | 723(47)        | 17(16)      |
| H(24)             | 1 133(46)            | 7 554(75) 1                | 403(52) $30(18)$              | н                               | (114) 2              | 2 292(32)             | 5 518(53)               | 2178(36)       | -7(11)      |
| H(25)             | 1357(41)             | 9 568(45) 1                | 720(65) $12(14)$              | Ĥ                               | (115) 2              | 2552(36)              | 4684(59)                | 3449(40)       | 4(13)       |
| H(26)             | 1247(35)             | 10422(58) 2                | 701(38) $0(12)$               | н                               | (116) 1              | 690(33)               | 3482(53)                | 3 287(37)      | -2(11)      |
| H(28)             | 444(35)              | 9282(58) 4                 | 614(40) $5(12)$               | н                               | (118) - 2            | 2 406(50)             | 5 053(76)               | 1 670(55)      | 32(20)      |
| $\mathbf{H}(29)$  | 843(44)              | 8 413(70) 5                | 927(50) 23(16)                | Ĥ                               | (119) - 1            | l 431(40)             | 5 859(61)               | 631(45)        | 10(15)      |
| H(210)            | 1 956(44)            | 7 360(72) 6                | 797(49) $22(17)$              | Н                               | (120) - 2            | 2 357(54)             | 4 595(93)               | -425(63)       | 50(24)      |
| $\mathbf{H}(211)$ | 2560(51)             | 7 255(80) 6                | 143(57) $32(20)$              | Ĥ                               | (121) - 2            | 2 123(44)             | 2 728(71)               | -541(49)       | 20(17)      |
| H(212)            | 2 117(36)            | 8 224(58) 4                | 788(40) $6(13)$               | Ĥ                               | (122) –              | -895(34)              | $2\ 004(53)$            | 418(36)        | -3(11)      |
| ()                | * In the for         | $m_{1/R}$                  | $2_{2} = 2$ 10 $525 = 2$      | B 12c=2                         | 、 /<br>(972)575#     | A* 1 978              | hlater ( 9B             | 65a*5*)]       | · -/        |

In the form:  $\exp\{-\frac{1}{4}(B_{11}h^2a^2)\}$  $+ B_{22}k^{2}b^{3}$  $^{2} + 2B_{23}klb*c* + 2B_{13}hla*c* + 2B_{12}hka*b*)$ .  $+ B_{33}l^2c^3$ 

TABLE 4

Atomic co-ordinates ( $\times 10^4$ ), isotropic ( $\times 10^2$ ) and anisotropic \* ( $\times 10^3$ ) temperature factors, with standard deviations in parentheses, for (3)

|                       |            |                      |                                       | -             |           |            |            |               |                            |
|-----------------------|------------|----------------------|---------------------------------------|---------------|-----------|------------|------------|---------------|----------------------------|
| Atom                  | X          | Y                    | Ζ                                     | $U_{11}$      | $U_{22}$  | $U_{33}$   | $U_{12}$   | $U_{13}$      | $U_{23}$                   |
| Sn                    | 0          | 2500                 | 1 250                                 | 34(1)         | <b>34</b> | 34(1)      | 0          | 0             | 0                          |
| N                     | 712(9)     | 3083(9)              | 2093(12)                              | <b>29(9</b> ) | 35(9)     | 54(11)     | -12(8)     | -15(8)        | -13(9)                     |
| $\hat{\mathbf{C}}(1)$ | 470(11)    | 3460(10)             | 2 822(16)                             | 31(12)        | 18(10)    | 72(16)     | -10(9)     | 0(11)         | 7(11)                      |
| čàn                   | 995(11)    | 3759(12)             | 3 500(13)                             | 37(12)        | 43(13)    | 38(14)     | -20(10)    | 6(9)          | 2(10)                      |
| $\tilde{C}(12)$       | 813(15)    | 4347(14)             | 4 053(17)                             | 60(17)        | 58(16)    | 58(17)     | -23(14)    | -4(13)        | -7(13)                     |
| $\tilde{C}(13)$       | 1341(23)   | 4 616(18)            | 4675(21)                              | 104(27)       | 66(22)    | 70(21)     | -28(21)    | <b>4</b> (21) | -19(18)                    |
|                       | 2014(25)   | 4 279(27)            | 4 740(30)                             | 99(32)        | 121(37)   | 82(26)     | -67(29)    | -40(24)       | 28(23)                     |
| C(15)                 | 2 100(10)  | 3 607(10)            | 4 173(24)                             | 78(22)        | 65(21)    | 89(23)     | -16(19)    | -22(19)       | 9(18)                      |
| C(16)                 | 1 604(16)  | 3 494(17)            | 3 571(20)                             | 40(18)        | 73(18)    | 48(19)     | -24(15)    | -20(14)       | 9(16)                      |
| C(10)                 | 395(11)    | 1 409(10)            | 3 022(15)                             | 43(13)        | 23(11)    | 55(13)     | 5(10)      | 6(11)         | 4(10)                      |
| C(21)                 | 651(19)    | 1402(10)<br>1640(19) | 3 709(16)                             | 56(14)        | 50(14)    | 36(11)     | 17(11)     | -12(13)       | -4(13)                     |
| C(22)                 | 1 274(16)  | 1.559(12)            | · · · · · · · · · · · · · · · · · · · | <u>91(10)</u> | 58(16)    | 43(18)     | 4(15)      | -18(14)       | $-\hat{8}(\hat{1}\hat{3})$ |
| C(23)                 | 1 374(10)  | 1 166(10)            | 3 907(17)                             | 77(99)        | 71(20)    | 102(20)    | 14(18)     | -32(21)       | -2(18)                     |
| C(24)                 | 1 795(20)  | 1 100(19)            | 0 512(21)                             | 70(21)        | 119(90)   | 76(22)     | 31(90)     | 2(18)         | - 24(21)                   |
| C(20)                 | 1 493(18)  | 900(22)              | 2 008(20)                             | 20(14)        | £9/18)    | 76(19)     | 9(19)      | 19(14)        | -24(21)<br>-9(14)          |
| C(26)                 | 759(14)    | 1 013(14)            | 2 305(19)                             | 59(14)        | 02(10)    | 70(18)     | -2(13)     |               | -2(14)                     |
| Atom                  | X          | Y                    | Z                                     | U             | Atom      | X          | Y          | Z             | U                          |
| H(12)                 | 270(115)   | 4 473(111)           | 3 906(155)                            | 7(6)          | H(22)     | 311(68)    | 2092(70)   | 3920(103)     | 3(3)                       |
| H(13)                 | 1154(133)  | 5.004(141)           | 4 988(178)                            | 5(8)          | H(23)     | 1 565(98)  | 1 762(96)  | 4 494(128)    | 6(5)                       |
| H(14)                 | 2 189/144  | 4 388(149)           | 4 975(189)                            | 4(9)          | H(24)     | 2 039(178) | 1,211(197) | 3 287(250)    | 9(15)                      |
| H(15)                 | 2 669(156) | 3 384(159)           | 4 202(189)                            | 12(10)        | H(25)     | 1.693(153) | 735(160)   | 2193(195)     | 7(11)                      |
| H(16)                 | 1 695(100) | 2 961(89)            | 3342(193)                             | 14(6)         | H(26)     | 483(96)    | 951(94)    | 1 973(117)    | 8(5)                       |
| 1.(10)                | 1 000(100) | 2 001(00)            | 0 0 1 20                              | 11(0)         | 11(20)    | 100(00)    | 001(01)    | 1 010(111)    | 0(0)                       |

\* See footnote to Table 2.

#### TABLE 3

program<sup>9</sup> was successful. In the first stage the 87 tripleproduct relationships needed to specify the sign of 90 generator ' reflections were found (with three signs taken positive for origin definition), with for each relationship a list of those reflections which would change sign if that relationship were false. In order to split the generators into two groups, which are strongly linked internally but have only weak interconnections, a low probability relationship was chosen on which the phases of a large number of generators depended, and it was treated as false; this reversed the signs of 50 reflections. The triple-product



FIGURE 1 Compound (1), molecule (1). Phenyl rings are numbered in sequence C(mn1)-(mn6), and each hydrogen atom is numbered according to the carbon atom to which it is attached



FIGURE 2 Compound (1), molecule (2)

relationships were then used to phase a further 525 phases (257 positive) and the corresponding E map did show two major peaks, identified as Si, and 20 peaks, identified as C, which provided a satisfactory starting point for Fourier and least-squares refinement. For the final cycles the phenyl rings were refined as rigid bodies to reduce the number of temperature factors [C-C 1.395, C-H 0.95 Å (ref. 10)] with isotropic parameters for their atoms, anisotropic for the rest. The final R was 0.067. A comparison of the PHASE results with the final phases showed that the initial phasing was not perfect, with 7 incorrect generator phases, but that all the MULTAN results were very poor.

J. M. Stewart, 'Phase Determination as applied in the 'X-Ray '67' System, in 'Crystallographic Computing,' ed. F. Ahmed, Munksgaard, Copenhagen, 1970.
<sup>10</sup> M. R. Churchill, *Inorg. Chem.*, 1973, **12**, 1213.

#### Bond distances (Å) and angles (°) in (1), with standard deviations in parentheses

| (a) Distance   | s                  |                |             |
|----------------|--------------------|----------------|-------------|
| Molecule (1)   |                    | Molecule (2)   |             |
| Si(1)-N(11)    | 1.703(15)          | Si(2) - N(21)  | 1.710(15)   |
| Si(1) - N(12)  | 1.707(15)          | Si(2) - N(22)  | 1.684(15)   |
| Si(1)-N(13)    | 1.718(14)          | Si(2) - N(23)  | 1.707(18)   |
| Si(1) - N(14)  | 1.723(14)          | Si(2) - N(24)  | 1.708(14)   |
| N(11) - C(11)  | 1.268(21)          | N(21) - C(21)  | 1.261(24)   |
| N(12) - C(12)  | 1.260(24)          | N(22) - C(22)  | 1.265(22)   |
| N(13) - C(13)  | 1.258(21)          | N(23) - C(23)  | 1.271(28)   |
| N(14) - C(14)  | 1.279(22)          | N(24)-C(24)    | 1.299(21)   |
| C(11) - C(111) | 1.506(17) *        | C(21) - C(211) | 1.468(18)   |
| C(11) - C(311) | 1.496(17) *        | C(21) - C(411) | 1.528(20)   |
| C(12) - C(121) | 1.497(18) *        | C(22) - C(221) | 1.513(15)   |
| C(12) - C(321) | 1.522(18) *        | C(22) - C(421) | 1.493(17) * |
| C(13) - C(131) | 1.492(18) *        | C(23) - C(231) | 1.514(17)   |
| C(13) - C(331) | 1.484(18) *        | C(23)-C(431)   | 1.479(20) * |
| C(14) - C(141) | 1.506(16) *        | C(24)-C(241)   | 1.486(16) * |
| C(14)–C(341)   | 1.499(15) <b>*</b> | C(24)–C(441)   | 1.493(18) * |
|                |                    |                |             |

(b) Angles

| Molecule (1)                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N(11)-Si(1)-N(12)                                                                                                                              | 108.49(72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N(11) - Si(1) - N(13)                                                                                                                          | 101.77(64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N(11) - Si(1) - N(14)                                                                                                                          | 116 18(66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N(12) - Si(1) - N(12)                                                                                                                          | 115.26(66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N(12) = Si(1) = N(13)<br>N(19) = Si(1) = N(14)                                                                                                 | 105 00(62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N(12) = SI(1) = N(14)<br>N(12) = SI(1) = N(14)                                                                                                 | 100.99(03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N(13)=31(1)=N(14)                                                                                                                              | 109.40(00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $S_1(1) = N(11) = C(11)$                                                                                                                       | 130.0(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $S_1(1) = N(12) = C(12)$                                                                                                                       | 135.2(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $S_1(1) - N(13) - C(13)$                                                                                                                       | 139.0(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $S_1(1) - N(14) - C(14)$                                                                                                                       | 128.2(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N(11) - C(11) - C(111)                                                                                                                         | 119.1(14) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N(11)-C(11)-C(311)                                                                                                                             | 124.3(14) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(111)-C(11)-C(311)                                                                                                                            | 116.5(11) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N(12)-C(12)-C(121)                                                                                                                             | 120.4(14) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N(12)-C(12)-C(321)                                                                                                                             | 122.4(14) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(121) - C(12) - C(321)                                                                                                                        | 117.0(13) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N(13) - C(13) - C(131)                                                                                                                         | 123.5(15) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N(13) - C(13) - C(331)                                                                                                                         | 118.9(15) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(131) - C(13) - C(331)                                                                                                                        | 117.5(11) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N(14) - C(14) - C(141)                                                                                                                         | 124.2(12) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N(14) - C(14) - C(341)                                                                                                                         | 120.3(12) <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C(141) - C(14) - C(341)                                                                                                                        | 115.5(11) <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Molecule (2)                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N(21)-Si(2)-N(22)                                                                                                                              | 110.12(73)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N(21) - Si(2) - N(23)                                                                                                                          | 114.87(79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N(21) - Si(2) - N(24)                                                                                                                          | 103.32(67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N(22) - Si(2) - N(23)                                                                                                                          | 103.03(71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N(22) - Si(2) - N(24)                                                                                                                          | <b>113.72</b> (70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| N(23) - Si(2) - N(24)                                                                                                                          | 112.23(71)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Si(2) - N(21) - C(21)                                                                                                                          | 138.8(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Si(2) - N(22) - C(22)                                                                                                                          | 140.2(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Si(2) - N(23) - C(23)                                                                                                                          | 138.9(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Si(2) - N(24) - C(24)                                                                                                                          | 138.4(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N(21) - C(21) - C(211)                                                                                                                         | 1204(16) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N(21) - C(21) - C(411)                                                                                                                         | 123.5(15) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(21) = C(21) = C(411)                                                                                                                         | 116 1(19) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N(22) - C(22) - C(221)                                                                                                                         | 122 1(12) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N(22) = C(22) = C(221)<br>N(22) = C(22) = C(421)                                                                                               | 122.1(10)<br>120.8(19) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C(22) = C(22) = C(421)                                                                                                                         | 120.0(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| N(92) = C(92) = C(921)                                                                                                                         | 109 5(15) #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N(93) - C(92) - C(491)                                                                                                                         | 120.0(10) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 11(20)-0(20)-0(201)                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C(921) = C(92) = C(491)                                                                                                                        | $120.8(13) + 115.7(14) \pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C(231)-C(23)-C(431)<br>N(24)-C(24)-C(241)                                                                                                      | 120.8(13) + 115.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117.7(14) + 117. |
| C(231)-C(23)-C(431)<br>N(24)-C(24)-C(241)<br>N(24)-C(24)-C(241)                                                                                | 120.8(13) + 115.7(14) * 117.7(14) * 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129.1(12) + 129. |
| $\begin{array}{c} C(231)-C(23)-C(431) \\ N(24)-C(24)-C(241) \\ N(24)-C(24)-C(441) \\ C(24)-C(24)-C(441) \\ C(441)-C(24)-C(441) \\ \end{array}$ | 120.8(13) + 115.7(14) * 117.7(14) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122.1(13) * 122. |

\* Standard deviation based solely on contribution from nonphenyl carbon atom.

Views of the molecules with atomic numbering are shown in Figures 1-4. Atomic co-ordinates and temperature factors are in Tables 2-4, and bond lengths and angles in

Bond distances (Å) and angles (°) in (2), with standard deviations in parentheses

| (a) Distances   |           |                 |            |
|-----------------|-----------|-----------------|------------|
| Ge-N(1)         | 1.883(4)  | C(119) - C(120) | 1.365(14)  |
| Ge-N(2)         | 1.859(5)  | C(120) - C(121) | 1.374(15)  |
| N(1) - C(1)     | 1.275(8)  | C(121) - C(122) | 1.399(13)  |
| N(2) - C(2)     | 1.258(8)  | C(122) - C(117) | 1.393(110) |
| C(1) - C(111)   | 1.474(9)  | C(21) - C(22)   | 1.405(10)  |
| C(1) - C(117)   | 1.492(10) | C(22) - C(23)   | 1.380(8)   |
| C(2) - C(21)    | 1.523(7)  | C(23) - C(24)   | 1.379(11)  |
| C(2) - C(27)    | 1.492(8)  | C(24) - C(25)   | 1.383(12)  |
| C(111) - C(112) | 1.403(8)  | C(25)-C(26)     | 1.388(9)   |
| C(112) - C(113) | 1.368(10) | C(26) - C(21)   | 1.389(9)   |
| C(113) - C(114) | 1.381(12) | C(27) - C(28)   | 1.395(8)   |
| C(114) - C(115) | 1.393(10) | C(28) - C(29)   | 1.385(9)   |
| C(115) - C(116) | 1.372(10) | C(29) - C(210)  | 1.358(13)  |
| C(116) - C(111) | 1.399(10) | C(210) - C(211) | 1.396(11)  |
| C(117) - C(118) | 1.397(10) | C(211)-C(212)   | 1.385(9)   |
| C(118)-C(119)   | 1.371(12) | C(212) - C(27)  | 1.385(10)  |
|                 |           |                 | • •        |

(b) Angles

| N(1)Ge $N(2)$            | 111.15(23  |
|--------------------------|------------|
| N(1) - Ge - N(2')        | 106.75(25  |
| N(1)-Ge- $N(1')$         | 109.81(25  |
| N(2)-Ge- $N(2')$         | 111.25(25  |
| Ge = N(1) = C(1)         | 123 78(45  |
| Ge - N(2) - C(2)         | 130.08(48  |
| N(1) - C(1) - C(111)     | 116.89(58  |
| N(1) - C(1) - C(117)     | 127 13(53) |
| C(111) - C(1) - C(117)   | 115.96(50  |
| C(21) - C(2) - C(27)     | 116.51(51  |
| C(1) - C(111) - C(112)   | 122.17(59  |
| C(1) - C(111) - C(116)   | 120.35(50  |
| C(112) - C(111) - C(116) | 117 46(61  |
| C(111) - C(112) - C(113) | 121.49(67  |
| C(112) - C(113) - C(114) | 120.50(58  |
| C(113) - C(114) - C(115) | 118.92(65  |
| C(114) - C(115) - C(116) | 120.81(72  |
| C(115) - C(116) - C(111) | 120.78(58  |
| C(1) - C(117) - C(118)   | 121.22(60  |
| C(1) - C(117) - C(122)   | 122.35(63  |
| C(118) - C(117) - C(122) | 116.43(69  |
| C(117) - C(118) - C(119) | 123.17(76  |
| C(118) - C(119) - C(120) | 119.34(83  |
| C(119) - C(120) - C(121) | 119.88(84  |
| C(120) - C(121) - C(122) | 120.70(85  |
| C(121) - C(122) - C(117) | 120.32(80  |
| C(2) - C(21) - C(22)     | 119.68(50  |
| C(2) - C(21) - C(26)     | 120.56(60  |
| C(22) - C(21) - C(26)    | 119.75(55  |
| C(21) - C(22) - C(23)    | 119.83(61  |
| C(22) - C(23) - C(24)    | 120.28(72  |
| C(23) - C(24) - C(25)    | 120.07(58  |
| C(24) - C(25) - C(26)    | 120.62(66  |
| C(25) - C(26) - C(21)    | 119.36(73  |
| C(2) - C(27) - C(28)     | 119.25(60  |
| C(2) - C(27) - C(212)    | 122.52(52  |
| C(28) - C(27) - C(212)   | 118.22(56  |
| C(27) - C(28) - C(29)'   | 120.80(70  |
| C(28) - C(29) - C(210)   | 119.94(64  |
| C(29) - C(210) - C(211)  | 120.91(61  |
| C(210)-C(211)-C(212)     | 118.65(74  |
| C(211)-C(212)-C(27)      | 121.40(62  |

Tables 5—7. Final structure factors are listed in Supplementary Publication No. SUP 21306 (44 pp., 1 microfiche).\* Apart from the local initial data processing program and ABSCOR (a local version), all computation for (1) and (3) was with the 'X-Ray' on a CDC 7600 and IBM 370/195.<sup>11</sup> For (2) the programs of Dr. D. Russell were used on an ICL 4130.

\* See Notice to Authors No. 7 in J.C.S. Dalton, 1974, Index issue.



FIGURE 3 Compound (2), viewed along the two-fold axis. Phenyl rings are numbered C(111)—(116), C(117)—(122) and C(21)—(26), and C(27)—(212)

#### TABLE 7

## Bond distances (Å) and angles (°) in (3), with standard deviations in parentheses

| (a) Distances     |            |                       |           |
|-------------------|------------|-----------------------|-----------|
| Sn-N              | 2.068(37)  | C(15) - C(16)         | 1.347(49) |
| N-C(1)            | 1.330(36)  | C(16) - C(11)         | 1.410(38) |
| C(1) - C(11)      | 1.470(36)  | C(21) - C(22)         | 1.332(36) |
| C(1) - C(21)      | 1.492(30)  | C(22) - C(23)         | 1.343(37) |
| C(11) - C(12)     | 1.374(40)  | C(23) - C(24)         | 1.392(51) |
| C(12) - C(13)     | 1.402(49)  | C(24) - C(25)         | 1.332(56) |
| C(13) - C(14)     | 1.367(63)  | C(25) - C(26)         | 1.369(43) |
| C(14) - C(15)     | 1.374(62)  | C(26) - C(21)         | 1.421(41) |
|                   |            |                       |           |
| (b) Angles        |            |                       |           |
| N-Sn-N'           | 107.71(67) | C(13)-C(14)-C(15)     | 120.7(38) |
| N–Sn–N″           | 110.36(64) | C(14) - C(15) - C(16) | 120.8(34) |
| Sn-N-C(1)         | 121.5(13)  | C(15)-C(16)-C(11)     | 119.4(28) |
| N-C(1)-C(11)      | 120.2(18)  | C(1) - C(21) - C(22)  | 122.4(20) |
| N-C(1)-C(21)      | 124.0(18)  | C(1)-C(21)-C(26)      | 119.3(20) |
| C(11)-C(1)-C(21)  | 115.7(18)  | C(22)-C(21)-C(26)     | 118.3(20) |
| C(1)-C(11)-C(12)  | 121.3(20)  | C(21)-C(22)-C(23)     | 123.0(22) |
| C(1)-C(11)-C(16)  | 118.2(20)  | C(22)-C(23)-C(24)     | 118.2(26) |
| C(12)-C(11)-C(16) | 120.5(22)  | C(23)-C(24)-C(25)     | 121.3(33) |
| C(12)-C(11)-C(13) | 118.7(26)  | C(24)-C(25)-C(26)     | 119.9(33) |
| C(12)-C(13)-C(14) | 119.8(32)  | C(25)-C(26)-C(21)     | 119.2(26) |
|                   |            |                       |           |



FIGURE 4 Compound (3), viewed along the  $\overline{4}$  axis. Phenyl rings are numbered C(11)—(16) and C(21)—(26)

DISCUSSION

The general conformation is similar for each of the four molecules [counting the two independent examples of (1)], and they are shown from similar viewpoints in



FIGURE 5 Packing diagram for compound (1), viewed down a, with c across, b down from the origin at top left

Figures 1—4. Each has an approximately tetrahedral arrangement of four nitrogen atoms about the central atom, with the maximum deviations being those for Si(1) with angles 101.8 to 116.2°. However some major difference must be present to account for the absence of

2475

from  $sp^2$  in (3) towards sp, moving its lone pair into a p orbital which can more effectively form a  $p_{\pi}-d_{\pi}$  dative bond. In the light of this explanation it is not unexpected both that the Si-N-C angles are not 180° and also that they are not all equal. The maximum possible  $p_{\pi}-d_{\pi}$  donation would be of four electron pairs, but it seems clear that Si only accepts substantially less than this in compound (1), and therefore the Si-N-C angles need not be 180°. It is also reasonable that a suitable total donation can be achieved with differing donation from each nitrogen. This then allows the bond angles to vary as a result of external influences, in particular packing interactions between the bulky phenyl groups.

The M-N-C angles show a steady decrease from (1) to (3) (means 137.1, 127.0, and 121.3°) indicating substantially reduced  $\pi$  bonding to Ge, with none detectable

|     |                                                               |       | Тав     | LE 8          |            |          |  |  |  |  |
|-----|---------------------------------------------------------------|-------|---------|---------------|------------|----------|--|--|--|--|
|     |                                                               | M-N   | and N-C | C distances ( | (Å)        |          |  |  |  |  |
|     |                                                               |       | 1       | M-N           |            |          |  |  |  |  |
|     | Obs.                                                          |       |         |               |            |          |  |  |  |  |
|     | М                                                             | M-C   | Calc.   | (mean)        | $\Delta$ * | C=N †    |  |  |  |  |
| (1) | Si                                                            | 2.352 | 1.879   | 1.717(10)     | 0.162      | 1.270(7) |  |  |  |  |
| (2) | Ge                                                            | 2.450 | 1.928   | 1.872(5)      | 0.056      | 1.266(6) |  |  |  |  |
| (3) | Sn                                                            | 2.810 | 2.108   | 2.06(4)       | 0.048      | 1.33(4)  |  |  |  |  |
|     | $* \triangle = \text{Calc.} - \text{Obs.} + \text{Mean obs.}$ |       |         |               |            |          |  |  |  |  |

to Sn. Similar conclusions can be reached by considering the M-N bond lengths, although this is less straightforward because of the difficulty of providing standard single-bond lengths. The most reliable estimates (Table



FIGURE 6 Packing diagram for compound (2), viewed down b

isomorphism, particularly between (1) and (2). This can be identified as the changing M-N-C bond angle, whose average values vary from 139.1 and 134.5 for (1) to 121.3° for (3).

One possible explanation for this is in terms of the packing of bulky groups, as M changes size. This is, however, insufficient, as Si and Ge are very similar in radius. The alternative is that the hybridization at N is changing 8) can probably be derived by combining M-C, C-C (1.544), and C-N=  $(1.475^{\circ})$ .<sup>12</sup> The differences between Si and Ge are clear, and there is an indication that the shortening with Sn is smaller (but subject to a relatively large error).

<sup>11</sup> Technical Report TR 192, Computer Science Center, University of Maryland, 1972.

<sup>12</sup> Chem. Soc. Special Publ., No. 18, 1965.

It has been suggested that  $\pi$  interactions in similar Si compounds can occur, not from the lone pair but from the C=N  $\pi$  orbitals. However this is not identifiable in the present structure, where the observed



FIGURE 7 Packing diagram for compound (3), viewed down c

distances (Table 8) show no significant lengthening compared to a normal C=N estimated from atomic radii  $^{12}$  (1.265 Å).

In conjunction with these compounds, the other ketimino-compounds whose structures are known illustrate the effectiveness of the group as a  $\pi$  donor, and the sensitivity of the M-N-C angle to the amount of  $\pi$ -donation. In both the Be and B diphenylketimines <sup>1,2</sup> the angle is close to 180° while in LiAl(NCBu<sup>t</sup><sub>2</sub>)<sub>4</sub> the terminal ketimino-groups bound to Al have angles of 167° (ref. 13). The  $\pi$  donation is presumably into empty p orbitals for Be and B, and into d orbitals for Al.

Molecular Packing.—Packing diagrams are shown in Figures 5—7. There are no unusually short intermolecular distances, and it seems that all the molecules behave approximately as spheres. It is very noticeable how the reduction in the M-N-C bond angle leads to more regular arrangement of the phenyl rings, and a more compact packing. This is shown particularly by the molecular volumes, 1 078 Å<sup>3</sup> for (1) and 1 032 Å<sup>3</sup> for (2). All the molecules have C(Ph)-C-C(Ph) angles of  $ca. 115^{\circ}$ , and the slight reduction from the expected 120° is presumably due to packing constraints.

We thank Dr. G. R. Willey, Dr. K. Wade for preparing the crystals and for drawing the problem to our attention, and the S.R.C. for a studentship (to M. P.-B.) and a grant for the diffractometer (to N. W. A.).

[5/802 Received, 29th April, 1975] <sup>13</sup> R. West, J. Organometallic Chem., 1965, **3**, 314.

© Copyright 1975 by The Chemical Society